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Abstract

In quantum mechanics, time plays a role unlike any other observable. We find that
measuring whether an event happened, and measuring when an event happened are fun-
damentally different — the two measurements do not correspond to compatible observables
and interfere with each other. We also propose a basic limitation on measurements of
the arrival time of a free particle given by 1/E} where E}, is the particle’s kinetic energy.
The temporal order of events is also an ambiguous concept in quantum mechanics. It is
not always possible to determine whether one event lies in the future or past of another
event. One cannot measure whether one particle arrives to a particular location before
or after another particle if they arrive within a time of 1/F of each other, where E is the
total kinetic energy of the two particles. These new inaccuracy limitations are dynamical
in nature, and fundamentally different from the Heisenberg uncertainty relations. They
refer to individual measurements of a single quantity. It is hoped that by understanding
the role of time in quantum mechanics, we may gain new insight into the role of time in

a quantum theory of gravity.
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1.1 Dual Measurements

One of the first lessons of quantum mechanics was that a property of a system does not
correspond to an element of reality until it is measured. It makes no sense to talk about
the position of a particle or the momentum of the particle, in and of itself. It is only
when we measure a physical quantity that we can actually say that a system possesses
it. The particle does not have a position until its position is actually measured.

Ordinarily in quantum mechanics, one is interested in measuring properties of a sys-
tem at a particular time ¢. One might want to know a particle’s position, momentum, or
spin, and the measurement of this quantity occurs at a certain time. For experiments at
a fixed time, quantum mechanics provides us with a useful formalism to describe reality.
Observables are represented by self-adjoint operators, and in the Heisenberg representa-
tion they evolve in time. The possible results of any measurement at any instant of time
t can be found by applying these operators to the wave function of the system at the
time .

This immediately raises the question of what the parameter time ¢ represents in the
Heisenberg equations of motion. Since ¢ is a number and not a self-adjoint operator,
it does not appear to be an observable in the usual sense. For any measurement of an
observable A(t) of a system, one can imagine a dual measurement, where one attempts
to measure the time ¢4 at which the system attains a particular value of A. The dual
measurement determines the time a certain event occurs, where the event in question
is the system attaining a particular value (or values) of an observable. For example,
instead of measuring the position of a particle at a certain time, one can consider the
dual measurement where the roles of z and ¢ are interchanged. Instead of measuring
where the particle is at time ¢, one measures the time that a particle is found at a

particular location z 4. In this dual measurement, the position x 4 is the parameter while
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the time becomes the observable one is trying to measure.

Classically, the time of an event can be made into an observable just like any other
and this time can be measured in a variety of ways, all of which give the same result. One
can simply invert the equations of motion of the system to find the time that an event
occurs ', and then measure the values of the canonical variables (generalized coordinates
and conjugate momenta). Since classically there is no uncertainty relation preventing the
measurement of all the coordinates and conjugate momenta simultaneously, there is no
limitation for finding the event’s time. One could also continually monitor the system to
determine the precise time when the event occurred. Since one can make the interaction
between the system and the measuring apparatus as small as one likes, this measurement
need not disturb the evolution of the system. Finally, one can also couple a clock to the
system in such a way that the clock stops when the event occurs. All these methods yield
the same results, and work to any desired accuracy.

Dual measurements, are quite common in modern laboratory experiments. In particle
physics one often wants to know the time that certain collisions or decays occurred.
However, surprisingly, dual measurements are not easily dealt with using the conventional
tools of quantum mechanics.

Pauli [8] was the first to demonstrate that there was no operator associated with
time. A time operator must be conjugate to the Hamiltonian, and he proved that this
is impossible if the Hamiltonian for the system is bounded from above or below. The
reason for this is that an operator which is conjugate to the Hamiltonian acts as a shift
operator for energy, and one could use it to shift the energy below any lower bound (or
above any upper bound).

Since then, there have been numerous attempts to circumvent his proof by considering

In some systems (especially in the context of general relativity), it is only possible to find the time
locally. A global time variable may not exist.
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either modified time operators, or by considering operators which correspond to the
“time-of-arrival”, i.e. the time that an event first occurs [9][12]. At first glance, the
latter operator need not be conjugate to the Hamiltonian, since all that is required is
that the time-of-arrival operator not evolve in time 2. However, in Chapter 4 we show
that, in general, time-of-arrival operators also do not exist.

Aharonov and Bohm were the first to write down a time-of-arrival operator [10], and
since then most of the work in the field of time-of-arrival has involved interpreting, or
modifying this operator[11][12], or operators associated with it (such as the “current
operator” [13]). Allcock [14][15] was the first to examine a physical model for measuring
the time-of-arrival, and this led him to suggest that time-of-arrival may not be measur-
able. However, his model did not contain a clock, and he argued that the source of the
difficulty in measuring time-of-arrival was in absorbing a particle in an arbitrarily short
length of time. In fact, as we will discuss, the source of the difficulty lies elsewhere, and
one needs to use models with physical clocks. Peres [16], has used physical clocks to de-
scribe measurements of various quantities, although not in the context of time-of-arrival,
and physical clocks have also been discussed in the context of barrier tunneling time [17].

Although much of the work in this field (including our own) is done in the context
of the Copenhagen interpretation of quantum mechanics, the problem of time-of-arrival
has also been studied in the context of the decoherent histories formalism [18]. In this
approach, amplitudes are not assigned to events at a certain time, but rather to entire
histories in a decohering set of histories. For the case of time-of-arrival, one finds that
histories which correspond to different arrival times do not decohere unless the particle
is coupled to an environment or a model detector [19]. In many respects, this supports

the approach that one must consider physical measurement processes in order to measure

2by definition, the arrival time is the same at all times - if I will (or did) arrive at 5 p.m., then this
statement remains true at 3 p.m., 4 p.m. and 6 p.m.
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the time-of-arrival.

The interest in a quantum mechanical time operator stems in part from the troubling
notion that elements of reality should be observables. It is hard to understand what
the parameter ¢ in the Schrédinger equation means, if it does not correspond to some-
thing physically measurable. Recently however, attempts to find a quantum theory of
gravity have also inspired numerous authors to examine the problem of time in quantum
mechanics.

In general relativity (and even in many laboratory experiments), we are often inter-
ested in performing experiments which are not fixed in time. For example, if we wish
to measure space-time distances, then we will probably want to know how long it takes
for a photon to travel between two points. This is a continuous measurement which
does not occur at any particular time. We may also want to know whether one event is
in the past or future of another event. Both these measurements are, in some sense, a
measurement of time itself, and it is these types of measurements which are necessary in
order to determine the components of the metric tensor.

Another physical property, which appears in the context of quantum cosmology, is
the maximum size the universe will attain. This is not a property of the universe at a
fixed time, but rather, a property of the universe over all time. In classical physics, one
could make measurements on a system at a fixed time in order to predict the evolution
of the system for all time. However, as we will see, in quantum mechanics this is not
always the case.

It is widely believed that one of the difficulties of constructing a quantum theory
of gravity, is that time plays an incompatible role in quantum mechanics and general
relativity [20]. In quantum mechanics, time is an external parameter while in general
relativity, time is much more a part of the theory. Both time and space bend and twist in

the presence of massive objects, and both space and time are represented by coordinates.
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It is space-time which is the element of reality in general relativity.

These coordinates are, of course, subject to coordinate transformations, and in par-
ticular, the theory is invariant under reparametrization of the time coordinate. One
consequence of this, is that if one tries to canonically quantize Einstein’s theory of gravi-
ty in a closed system, one finds that the wave-function must satisfy the Wheeler-DeWitt
equation

H\Il(gab,wab) =0 (11)

where the wave function depends on the 3-metric and conjugate momenta and H is
known as the Hamiltonian constraint and is the generator of time reparametrizations
and time-translations when the equations of motion are satisfied. Because the Hamilto-
nian constraint must always be satisfied, most standard interpretations require that the
only possible observables are those which commute with the constraint [22]. However,
observables which commute with the constraints don’t evolve in time, making the system
rather hard to describe. It is not clear how to best frame physically meaningful questions,
if all the observables are static with respect to parameter time.

One of the central sources of the the problem of time in quantum gravity (and quan-
tum cosmology in particular) is that it attempts to describe the entire universe quantum
mechanically. There is no external observer, and therefore, no external parameter time.
Many authors have therefore attempted to develop alternative frameworks of quantum
mechanics which do not rely on an external time parameter [18][20][22][21]. By re-
examining the way in which we think about time, we may be able to construct a consis-
tent theory of quantum gravity. In this thesis, we make no pretense of trying to solve
the problem of time in quantum gravity. Rather, we take the approach that in order
to understand the role of time in quantum gravity, one must first understand the role

of time in quantum mechanics. As it turns out, this is far from easy, and there still
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exist many ambiguities in the role of time in quantum mechanics. Our hope is that a
better understanding of time in the arena of quantum mechanics will benefit and inform
research in the field of quantum gravity. At the end of this thesis, we will discuss some

of the connections between the problem of time in quantum gravity and our research.

1.2 Differences Between Measurements of Space and Measurements of Time

Ever since Einstein’s theory of special relativity, we have been encouraged to think of
time and space on an equal footing. However, even classically, time and space are quite
different as our common experience tells us. Objects move constantly forward in time an
a manner very different to the way they move through space. Although we will discuss
in more detail the differences between quantum measurements of ordinary observables
and measurements of time in Chapter 2, it may be instructive to roughly outline the
differences between measurements of a particle’s position at a fixed time, and the time a
particle is found at a particular location.

In standard quantum mechanics, the probability that a particle is found at a given

location X at time ¢ is given by
PUX) = (X, ) . (1.2)

If we know v (z,0) for all x then the system is completely described and we can easily
compute this probability distribution at an instant of time. If we know the Hamiltonian
of the system, then using the Schrédinger equation we can also compute ¢ (x,t) at any
time t. This probability distribution corresponds to results of a measurement of position
at a particular time. Quantum mechanics gives a well defined answer to the question,
“where is the particle at time t?7”

However, it is also perfectly natural to ask “at what time is the particle at a certain

location.” Here, quantum mechanics does not seem to provide an unambiguous answer.
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At first sight it seems that the probability distribution P,(7T) to find the particle at a
certain time at the location x is simply |¢(z, T)|?, However, [¢(z,T)|?, does not represent
a probability in time, since it is not normalized with respect to 7.

One might be tempted therefore, to consider the quantity

py7) - Y@ TP

= Tlole, o) de (13)

This normalization depends on the particular state being measured, and can only be
done if one knows the state ¢(z,t) at all times ¢ (infinitely far in the past and future).
There are also states for which the particle is never found at the position x, in which
case the expression above is undefined. Not-withstanding this, one might argue that this
quantity gives one a relative probability that the particle is found at the location x at
time 7" (if the measurement is made at that time 7'), as opposed to another time 7" (if
the measurement is made at time 7").

However, the expression above certainly does not yield the probability in time to
detect the particle. One reason for this failure is that a particle may be detected at a
location X at many different times ¢ (e.g. I can be found in my office at many different
times in the day). On the other hand, if at time ¢ a particle is detected at location X,
then we can say with certainty that at the same time ¢, the particle was not at any other
location X' (e.g. at nine a.m. I am in bed, and therefore, I cannot also be in my office).
Equation (1.3) does not give a proper probability distribution as the various outcomes are
not disjoint. P,(7) is not a probability distribution in time in the sense usually reserved
for probability distributions in quantum mechanics. P,(T) is very different from P;(X)
and has different properties (as we will see in the next chapter).

This leads us to consider the time of first arrival of a particle, since a particle can
only arrive once to a particular location. In order to measure the arrival time one cannot

use expression (1.3) since one needs to detect the particle at time ¢4, and also know that
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the particle was not there at any previous time. In other words, one must continuously
monitor the location x4 in order to find out when the particle arrives. However, this
continuous measurement procedure has it’s own difficulty, and also emphasizes the prob-
lem with the previous probability distribution. Namely, that the probability to find a
particle at t = T is generally not independent of the probability to find the particle at
some other time ¢ = T". i.e.. if II,, is the projector onto the position z 4, then in the

Heisenberg representation 3
[Ty, (£), T, ()] # 0. (1.4)

Measurements made at different times disturb each other. We will see in Section 2.2 that
this is one of the properties of ordinary measurements which measurements in time vio-
late. Measurements made at different times do not commute. Therefore the probability
distribution obtained from this measurement procedure, although well defined, does not
give a probability distribution in time.

Von Neumann measurements * happen at a certain time. One measures the particle’s
position at time ¢. Even a continuous measurement at a particular location is a series of
measurements at a certain time. Each instant that the Geiger counter doesn’t click, it is
measuring the fact that a particle has not entered it. Furthermore, operators which are
used to measure the time-of-arrival to the location xz 4, are not measured at x 4, but rather
at an instant in time. In quantum mechanics, measurements made at different times can
disturb each other, which can make measurements of the time of an event problematic.

The probability of detecting a particle at a certain location at time ¢ is not independent

3The exact expression for the commutator of the position projectors at different times is not particular-
ly illuminating. However, it is fairly obvious Il,, doesn’t commute with itself at different times, because
the position operator itself doesn’t commute with itself at different times. I.e., since x(t) = xo + pt/m,
we have [x(t),x(0)] = it/m.

“In [23] Von Neumann outlined how one goes about measuring observables which correspond to self-
adjoint operators. The results one obtains for the measurements are universal, and correspond to actual
properties of the system.



Chapter 1. Introduction 10

of detecting the particle at some other time #'.

1.3 Inaccuracies and Uncertainties

The measurement of an observable corresponding to a self-adjoint operator can be as
accurate as one wishes. This is true despite any uncertainty relations which govern
various sets of observables. The position, or momentum of a particle (but not both)
can be measured to any desired precision. Consider two observables A and B which do
not evolve in time, and whose commutator is 7 (in units where 7 = 1). Imagine that
we have an ensemble of identical systems prepared in some initial state. On half the
ensemble, we can measure A, and on the other half, we can measure B. Each individual
measurement can be as accurate as we wish. An extraordinary experimentalist can reduce
the inaccuracies in the measurement to almost zero, and can get a particular value for
each measurement. The experimentalist may have a dial on her device which will point to
the value of A after the measurement. She will have to make sure that initially the pointer
on her dial points almost exactly to zero, and then after each run of her experiment, she
measures the position of the dial very accurately to determine the value of A.

If we then plot all of the measurements of A and all of the measurements of B, we
will find a distribution of measurements which have a natural width of AA and AB
respectively. One then finds that no matter what initial state we choose, AAAB > 1.
There is an uncertainty relation between the distributions of A and B, but there are no
theoretical limitations on the accuracy of each individual measurement of A or B.

The experimentalist does not have to make her measurements totally precise. She
could, for example, start off the experiment with her dial in a state where the initial
position of the needle is uncertain. An uncertainty in the initial pointer position will

result in her measurement being inaccurate. When she measures the final position of her
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pointer, she will not be able to infer the precise value of the measurement of A or B
because she will not know exactly what the initial value the pointer was set to.

For measurements of conventional observables, there are no limitations on the inac-
curacy of measurements. However, we will find that for certain observables relating to
the time-of-events, one must make the measurement inaccurate. If one attempts to make
the measurement too accurate, one finds that the measurement fails.

The inaccuracy limitations we find are not equivalent to the so-called “Heisenberg
energy-time uncertainty principle”. The limitations refer to individual measurements of
a single quantity. Quantum mechanics places no limitation on how accurately we can
make a single measurement of position or momentum (although an accurate measurement
of position will disturb the momentum and visa-versa). For measurements of time-of-
arrival however, we cannot make a single measurement arbitrarily accurate. If we do so,

we may find that the particle never arrives.

1.4 What Lies Ahead

In this thesis, we will find that dual measurements are fundamentally different from
measurements of ordinary quantum variables. We will examine a number of different
types of dual measurements as well as various methods for making them. In Chapter
2 we will look at measurements where one continually monitors the state to determine
whether the event has occurred. This involves a series of measurements at closely spaced
time intervals. We find the surprising result that the question of whether an event has
occurred and the question of when it occurred are not compatible observables. Describing
attributes of a system in time is fundamentally different from describing attributes at
a given time. The more difficult question of “when did the event occur?” cannot be

measured unambiguously in quantum mechanics. We also critically examine the use
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of the probability current to measure the time at which a particle arrives to a certain
location. The discussion suggests that the difference between time and other observables
is not merely formal.

The central result of the thesis is contained in Chapter 3 where we discuss the problem
of the time-of-arrival of a particle to a particular location. It is argued that the time-of-
arrival cannot be precisely defined and measured in quantum mechanics. By constructing
explicit toy models of a measurement involving physical clocks, we show that the time-
of-arrival for a free particle cannot be measured more accurately then 6t4 ~ 1/Ey, where
E}, is the initial kinetic energy of the particle. With a better accuracy, particles reflect
off the measuring device and the resulting probability distribution becomes distorted.
This is a new relation which is not equivalent to the so-called “Heisenberg energy-time

” 5 _ it places a restriction on each individual measurement of time-of-arrival.

uncertainty

The basic reason for the inaccuracy limitation is that while one can construct an arbi-
trarily accurate clock, using this clock presents difficulties. The more accurate the clock,
the greater the spread in the clock’s energy. Accurate clocks are extremely energetic,
and this makes it harder for the system to stop the clock. In order to use the clock to
measure the time of an event, one needs the system to turn off the clock when the event
occurs. For accurate clocks, the system will not always have enough energy to turn it
off, and no measurement will occur.

Recently, many authors [12] have attempted to construct operators which can be
used to measure the time-of-arrival of a particle. In Chapter 4 we present a formal proof

that a time-of-arrival operator cannot exist. Still, many believe that one can modify a

time-of-arrival operator in such a way as to make the concept useful. We discuss the

5For convenience, we will sometimes use the term “Heisenberg’s energy-time relation”. It should
be remembered however, that since time is not represented by a self-adjoint operator, the uncertainty
relation is actually between energy, and observables of the system which evolve in time (for example, an
atom’s life-time becomes uncertain if the atom is close to an eigenstate of energy)
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relationship between these modified operators, and the direct measurements discussed
in Chapters 2 and 3, and argue that a measurement of the time-of-arrival operator does
not correspond to these continuous measurements. Unlike the classical case, in quantum
mechanics the result of a measurement of the time-of-arrival operator may have nothing
to do with the time-of-arrival to z = 4.

There has been renewed interest in time-of-arrival operators following the suggestion
by Grot, Rovelli, and Tate, that one can modify the low momentum behavior of the oper-
ator slightly in such away as to make it self-adjoint [9]. We show that such a modification
results in the difficulty that the eigenstates are drastically altered. In an eigenstate of the
modified time-of-arrival operator, the particle, at the predicted time-of-arrival, is found
far away from the point of arrival with probability 1/2.

The bound of 1/E} on the accuracy of time-of-arrival measurements is based on
calculations done using numerous measurement models corresponding to specific Hamil-
tonians, as well as more general considerations. However, because the limitation is based
on dynamical considerations and not kinematic ones, a formal proof of the limitation may
not exist. For example, a proof of the Heisenberg uncertainty relation relies only on the
properties of specific operators, while our inaccuracy relation is a statement not about
operators, but about measurements (and therefore, involves the dynamical considerations
of the actual measurement). Perhaps by making certain restrictive assumptions about
the Hamiltonian one might be able to construct a formal proof. Such a proof would have
to take into account the measurement model which will be discussed in Section 3.3.3 in
which we show that if one has prior information about the wavefunction, and if the wave-
function is almost an eigenstate of energy (i.e. its time of arrival is completely uncertain),
then one can measure the time of arrival to an accuracy better than 1/E;. One therefore
expects that a formal proof will not only have to involve making assumptions about the

interaction Hamiltonian, but also the initial state of the wave function. The existence of
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a formal proof for our inaccuracy limitation remains an interesting open question.

While we know of no formal proof for the inaccuracy limitation for time-of-arrival, one
can make more general statements about measurements of ”traversal time”. In Chap-
ter 5 we consider the problem of a free particle which traverses a distance L and argue
that a violation of the above limitation for the traversal-time implies a violation of the
Heisenberg uncertainty relation for z and p. This result does not depend on the details
of the model being used in the measuring process. Measurements of traversal-time are
dual to measurements of traversal distance, and it can be shown that one can measure
the distance a particle travels to any desired precision. This chapter also contains a fur-
ther discussion on the difference between what we call “inaccuracy” limitations, which
constrain the precision with which individual measurements are performed, and “uncer-
tainties” which are kinematic quantities which relate to the spread in measurements on
ensembles.

Chapter 6 contains what may be our most interesting result. In it, we examine
whether one can determine the temporal ordering of events. We find that one cannot
measure whether one event occurred in the future or past of another event to arbitrary
accuracy. The minimum inaccuracy for measuring whether a particle arrives to a given
location before or after another particle is given by 1/F where F is the total kinetic energy
of the two particles. We discuss the relationship between this type of measurement, and
coincident counters, as well as Heisenberg’s microscope. We show that in general one
cannot prepare a two particle state where the two particles always arrive within a time
of 1/E of each other. This has interesting consequences for determining the metric
properties of a space-time.

In this thesis we will work in units where h =c =1



