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5.1 A Limitation on Traversal Time Measurements

In Chapter 3, we considered various clock models for measuring the time it takes for a free
particle to arrive to a given location z4. Because the energy of the clock increases with
its precision, we argued that the accuracy of a time-of-arrival detector cannot be greater
than 1/Ey, where Ej is the kinetic energy of the particle. Measurements of traversal
time [16] are analogous to that of time-of-arrival. One tries to measure how long it takes
a particle to travel between two fixed locations z; and x,. Although no proof has yet
been found for the restriction on time-of-arrival accuracy, in this Chapter we provide
model independent arguments that a necessary minimum inaccuracy on traversal time
measurements is given by

8T > 1/E,. (5.143)

We do this by arguing that a traversal time measurement is also a simultaneous mea-
surement of position and momentum, and that (5.143) is required in order to preserve
the Heisenberg uncertainty relationship. Once again (5.143) is not analogous to the
Heisenberg Energy-time uncertainty relationship. It reflects the inherent inaccuracy of
every individual measurement, while the Heisenberg uncertainty relationships refer to
well-defined and perfectly accurate measurements made on ensembles.

This chapter proceeds as follows. In section 5.2 we motivate the notion that traversal
time is a measurement of momentum by looking at measuring the traversal-distance. In
sectionb.3 we discuss a physical model for measuring the traversal time, and show the
relation between (5.143) and the uncertainty principle. The main result of this Chapter
is given in Section 5.4, where we provide a model independent argument for (5.143), as

well as a qualitative proof.
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5.2 Measuring Momentum Through Traversal-Distance

The measurement of traversal-distance may be considered the space-time dual of the
measurement of traversal time: instead of fixing z; and z, and measuring tp = ty — t;,
one fixes ¢; and t9 and measures zp = 9 — ;. It is instructive to examine first this
simpler case of traversal-distance and point out the similarities and the differences.

Unlike the case of traversal time, a measurement of traversal-distance can be described
by the standard von Neumann interaction. For a free particle the Hamiltonian is

p2

H=—
2m

+Qx|0(t —t1) — 6(t — ty) (5.144)

where Q is the coordinate conjugate to the pointer variable P. The change in P yields

the traversal-distance:
P(t > tg) — P() = X(tg) — X(tl) = Xp. (5145)

However the measurement of the traversal-distance provides additional information:
it also determines the momentum p of the particle during the time interval t; < t < t5.

From the equations of motion we get:

Po, t<tiort>t
p(t) = ' ’ (5.146)
Po — Qa tl <t< t2
and
To + B2t t<t
x(t)=4 ™ ' (5.147)

-Q
.Io'f‘%tl'i‘poT(t—tl), tl StStQ

and therefore,
P(t > tz) - Py

to — 11

Thus, one can determine simultaneously and to arbitrary accuracy the traversal-distance

and the momentum in intermediate times. This, of course, does not contradict the
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uncertainty relations, because p commutes with xz, and x remains completely uncertain.
Similarly, in the case of the traversal time we shall see that the measurement determines
also the momentum during the traversal, however unlike the present case, since the
particle has to be in the interval x9 — x; during the traversal, it is also a measurement of
the location. This indicates that, in the latter case, in order not to violate the kinematic
uncertainty principle for z and p, the accuracy with which the traversal time, T, or the

momentum may be measured must be limited.

5.3 Measuring Traversal Time

For traversal time the classical equations of motion suggest that a traversal time operator
might be given by
_mL

Tp = 12 5.149
P= ( )

where L. = x5 — x1. This operator is self-adjoint, but like the time-of-arrival operator,
we shall see that different outcomes are found in a direct measurement of T and a
measurement of the operator Tg. Furthermore, one can measure the quantity Ty at any
time, so there is no reason to believe that the particle actually traveled between the two
points in the time tg. Since Ty is only a function of p, the measurement will result in
the particle’s position being spread over all space, so there is no finite amount of time one
could wait before being certain that the particle went between the two fixed points. For
example, after the measurement of Ty, the potential between z; and zo might change.
General traversal time operators would require that one knows the Hamiltonian not only
in the past, but also in the future. If one measures the traversal time operator above,
then one has to have faith that the Hamiltonian will not change after the time of the

measurement £, to £ — oo.
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It is also commonly accepted that the dwell time operator [31], given by

o = /0 Y UL, (1) (5.150)

where
Z2
I, (0) = [ la)(@ (5.151)
x
can be used to compute the traversal time!. Such a quantity however, cannot be mea-
sured, since, as we saw in Chapter 2, the operator Il ,(¢) does not commute with itself

at different times.

[IL,,(¢),I1,,(t")] # 0. (5.152)

Therefore, one must measure the traversal time in a more physical way. One must demand
that if we measure the traversal time to be tg, then the particle must actually traverse
the distance between z; and x, in the time given by the traversal time measurement.
For example, one could have a clock which runs when the particle is between z; and x»

given by the Hamiltonian [16][32]

HoP V(x)Q (5.153)

- 2m
where the traversal time is given by the variable P conjugate to Q and the potential V'
is equal to 1 when z; < x < x5 and 0 everywhere else . In the Heisenberg picture, the

equations of motion are

x=p/m, p=—-Q(x—xz1)—0(x— x2)) (5.154)

P=V(x), Q=0. (5.155)

The particle’s momentum is disturbed during the measurement

p = /p? - 2mQ (5.156)

Lin our case, where there is no potential barrier, the dwell time and traversal time are equivalent
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where p’ is the particle’s momentum during the measurement, and p is the undisturbed
momentum. However if the interaction is weak () < E),, then after a sufficient time, the

clock will read the undisturbed traversal time

L7V (x(0) - B a
m(zy — x1)

= = (5.157)

P(t — c0) — P(0)

12

If we require an accurate measurement of the traversal time, then a small dP will result
in large values of the coupling Q). If ) is too large, the clock can reflect the particle at
z1 and one will obtain a traversal time equal to 0. This therefore imposes a restriction
on the accuracy with which one can measure the traversal time. As in Chapter 3 we find
that

0Tr >1/E, (5.158)

is required in order to be able to measure the traversal time, and
0Tr > 1/E, (5.159)

in order to measure the undisturbed value of the traversal time.
Let us show that the above conditions are consistent with the uncertainty relations
for the position and momentum. If (5.159) is satisfied, we have Q < E, and by eq.

(5.156) the momentum during the measurement is
m
p~p- SQ (5.160)

Thus during the measurement, the momentum will be uncertain by an amount

dp' ~ Q. (5.161)
Do

In order to know whether the particle entered our detector, we need to be able to dis-

tinguish between the case where the pointer is at its initial position P = 0, and the case
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where the particle has gone through the detector P = tp = TZ—OL. We therefore need the

condition
L
ap < =, (5.162)
Po
Since at best we have dP = 1/dQ, we find
dp'dx = dp'L > 1. (5.163)

The uncertainty relation (5.158) only applies to this particular model clock - it might
be possible to accurately measure the traversal time in some clever way. In the following
section we will argue that this cannot be done, by demonstrating that this uncertainty
applies to all measurements of traversal time.

Finally, we should note that a traversal time detector could be made by measuring the
time-of-arrival to x1 and the time-of-arrival to x5. This would require two time-of-arrival

clocks each with its own inaccuracy, whereas the model above only has one clock.

5.4 General Argument for a Minimum Inaccuracy

We now consider general measurements of traversal time. We will however, impose
some fairly unrestrictive requirements on the measurement. We will assume that the
measurement does not prevent the particle from actually traversing the distance between
x1 and x,. [.e. we want to be able to say that the particle did indeed traverse the distance
L - otherwise, it is unclear what it is that we are measuring.

We also demand that the result of the measurement corresponds in some sense with
the classical notion of traversal time. I.e., we are measuring something like mL/p. Our
measuring device will consist of a pointer, which is set to some initial position P, with
an uncertainty in the initial value of the pointer of dP. At the end of the measurement,

we assume that the value of the traversal time is inferred accurately by reading the final
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value of the pointer. The measured traversal time is then proportional to Py — F;. The
relative accuracy of the traversal time will then be given by 67;/T; — dP/(P; — P;)

Another condition we will impose is that the inaccuracy of the measurement, 67,
is less than the quantity we are trying to measure Tr (i.e. we are looking at accurate
measurements). Finally, we assume that the experimentalist has no knowledge of the
state of the particle, and thus must set the initial state of the measuring device (and its
inaccuracy 0P) with no prior knowledge of the ensemble.

Before proceeding with the argument, we should be clear to distinguish between
different types of uncertainties. For an operator A, there exists a kinematic uncertainty

which we will denote by dA given by
dA? = (A?) — (A)% (5.164)

This is the uncertainty in the distribution of the observable A. There is also the inherent
inaccuracy in the measuring device. This is the relevant quantity in equations (5.143)
and (5.158). It refers to the uncertainty in the initial state of the measuring device’s

pointer position P, and we will denote it by § A. For our measuring devices we have
0A =dP, (5.165)

This inaccuracy applies to each individual measurement. Lastly, there is the uncertainty
A A which applies to the spread in measurements made on the ensemble. Given a set A,

of experiments ¢ = 1, 2, 3... which yield results A;, we have
AA? =< A%, > — < Ay >2. (5.166)

This uncertainty includes a component due to the kinematic uncertainty of the attribute
of the system, and also the inaccuracy of the device. For our measuring device, the

kinematic spread in the pointer position at the end of each experiment gives AA

AA = dP; (5.167)
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The Heisenberg uncertainty relationship dAdB > 1 applies to measurements on en-
sembles. Given an ensemble, we measure A on half the ensemble and B on the other half.
The uncertainty relation also applies to simultaneous measurements 2. If we measure A
and B simultaneously on each system in the ensemble, then the distributions of A and
B must still satisfy the uncertainty relationship.

Returning now to the traversal time, we see that it can be interpreted as a simulta-
neous measurement of position and momentum. We know the particle’s momentum p
during the time that it was between z = z; and z = x5 from the classical equations of
motion

_mL

te = 5.168
F= (5.168)

In other words, eigenstates of momentum must have traversal times given by equation
(5.168). This measurement of momentum is analogous to the measurement described in
Section 5.2. Instead of measuring the change in position at two specified times ¢; and 5,
we are now measuring the difference in arrival times after specifying two different posi-
tions z1 and z5. During the measurement, we also know that the particle is somewhere
between © =z, and © = z,. i.e.. we know that x = 2222 + [ /2.

The uncertainty relationship also applies to these measured quantities AzAp > 1.
This essentially means that a detector of size L will disturb the momentum by at least
2/L, so that repeated measurements on an ensemble will give Ap > 2/L. The position of
the detector X commutes with the momentum of the particle p [10] however, we demand
that the particle actually travel the distance L. The particle must actually be inside the

detector during the measurement. As a result, X must be coupled to the position x of

2For a discussion of how the uncertainty relation applies to simultaneous measurements, see for ex-
ample, Arthurs and Kelly[38] They propose a model for simultaneous measurements using a Hamiltonian
H = 6(t)(P1A + P2B) which measures the variables A and B using two measurement pointers Q; and
Q2 which are conjugate to P; and P,. They show how the Heisenberg uncertainty relation applies to
the uncertainty in the outcomes of the measurement of A and B.
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the particle and so a measurement of X is also a measurement of x. This is what we
mean by a local interaction.
We now show why we expect (5.143) to be true. During the measurement of traversal

time, the momentum will be disturbed by an amount
dp > 2/L. (5.169)

If this disturbance is small, then from (5.168) we expect this will cause an inaccuracy
given by

L
0T = dp
p

> 1/E, (5.170)

For measurements where the disturbance to the system is minimal (i.e.. when dp and 07T
are small) we see that (5.143) gives the minimum inaccuracy on traversal time measure-
ments.

We now proceed with the slightly more rigorous argument. We imagine a traversal
time detector which has an inaccuracy given by 67Tr. Measurements can then be carried
out on arbitrary ensembles with arbitrary Hamiltonians. We will show that by choosing
this ensemble appropriately, the uncertainty relationship AxAp > 1 can be violated,
unless the traversal time obeys the relationship given by (5.143).

We assume that initially, the pointer on our traversal time detector is given by
P,=¢ (5.171)

where € is a small random number which arises because of the initial inaccuracy of the
clock. i.e.. the distribution of € is such that (¢) = 0 and the clock’s initial inaccuracy in
pointer position is dP? = (€?). It is important to note that this inaccuracy is fixed as

an initial condition before any measurements are made. It is a property of the device,
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and does not depend on the nature of the ensemble upon which we will be making
measurements. For a free Hamiltonian, a measurement of the traversal time will result
in a final pointer position given by

L
Pr=P+ = (5.172)
P

where p is the momentum of the particle in the absence of any measuring device. For
eigenstates of p (or states peaked highly in p), we demand that the traversal time be
given by the classically expected value 3. Recall that the kinematic spread in the particle’s
momentum is given by dp? = (p?) — (p)2. A measurement of the traversal time for a
particular experiment 7 can take on the values

T, = P

L
= %7+e (5.173)

A given measurement 7; will allow us to infer the momentum of the particle p; during

the measurement

mL mLp
i(T;) = = . 5.174
pi(T5) T = mL+ pe (5.174)
The average value of any power « of the measured momentum is
mLp \*
) = —_— dpd 5.175
w0 = [ () rwsterini (5.7

where f(p) gives the distribution of the particle’s momentum and g(e) is the distribution

of the fluctuations. We now choose the mass m of the ensemble so that we always have
ep L mL. (5.176)

In other words, we consider measurements on ensembles where the measurement is much

more accurate than the quantity being measured. i.e.. 0Tr << Tp. Indeed for the

3Tt is possible to include small deviations from the classical value, by including an additional term in
(5.172). These fluctuations need to average to zero in order to satisfy the correspondence principle. For
small fluctuations, the following discussion is not altered.
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example given in the previous section, for every given e and p, we can increase E, by

choosing a sufficiently large m, and reach this limit. This limit ensures that (pss) never

diverges, and simplifies our calculation by allowing us to write

0t = [ (p- L) s0uteripie

For a« = 1 we find

(pm) =~ (p)—

For o« = 2 we find

W = [ (-2 D+ () souterdpae
2 <p4><62)
= (p)+ (mL?
This gives us
Ap® = (pis) — (pm)”
(p4)5T1% 2
(mL)? +d
Since
@y =) (g
we find
Ay = 2T 1 (BY) +

Finally, we arrive at the relation
2

L
(AzAp)? = 6TA((E)? + dE?) + de2.

The uncertainty relation

AxAp > 1

(5.177)

(5.178)

(5.179)

(5.180)

(5.181)

(5.182)

(5.183)

(5.184)

(5.185)
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then implies
1
- ZLdez
(E)? + dE?

Now we note that we can arrange our experiment with Ldp arbitrarily small, by choosing

§TE > (5.186)
dp of the ensemble arbitrarily small. i.e.. the uncertainty in the traversal time is small.

As a result, in order to ensure that Heisenberg’s uncertainty relation is never violated,

we must have

1
0Ty > —————. (5.187)
V(E)? + dE?
Since dp is small, we can write
1
0Ty > (5.188)

(E)
It is interesting to note that since the momentum operator commutes with the free

Hamiltonian, the restriction on traversal time measurements only comes from the dy-

namical considerations given above.

5.5 From Traversal Time to Barrier Tunneling Time

We have seen that the measurement of the traversal time given two positions cannot
be made arbitrarily accurate. We have argued this by looking at a simple model for
measuring traversal time, and we have also given a model independent, qualitative proof
of this which applies when the measurement only disturbs the system slightly. Finally
we have given a more rigorous argument which applies when the uncertainty in traversal
time is small. This strongly suggests that the limitation on measurements of arrival
times is a general rule and not just an artifact of the types of models considered so far.
Operators for both the traversal time and the arrival time don’t seem to correspond
to physical (continuous) processes. The case of traversal time is different from time-
of-arrival in that there does exist a self-adjoint traversal time operator, and the semi-

bounded spectrum of the Hamiltonian does not seem to play an important role in the
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restriction on measurement accuracy. The accuracy restriction on traversal time may be
particularly important for experiments on barrier tunneling time. If one uses a physical
clock to measure the time it takes for a particle to travel from one location to another,
with a barrier situated somewhere between the two locations [17][32], then the accuracy
of this clock may affect the tunneling particle. The limitation presented in this Chapter
seem to indicate that measurements of barrier tunneling times would also need to be
inherently inaccurate, because if one tries to measure the tunneling time too accurately,
the particle may be unable to tunnel. Our result concerning traversal time indicates that

the barrier tunneling time also cannot be precisely defined.



