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3.1 A Limitation on Time-of-Arrival Measurements

In the previous Chapter, we saw that if we attempt to measure the time of an event using
a rapid series of measurements, then our measurement will disturb the very thing which
we are trying to measure. For the simple case of a two state system, we were able to
show that if we make the measurement accurately enough, the system freezes, and the
event never occurs.

In this Chapter, we study measurements of the time-of-arrival of a particle to a
particular location using physical clocks. The clocks are coupled to the system in such
a way that when the particle arrives to the fixed location, the clock will read the time-
of-arrival. Unlike the continuous measurement procedure discussed in the last Chapter,
we obtain the time of the event using only a single measurement which is made well
after the event has occurred. Nonetheless, we will find that if we make the measurement
extremely accurate, the measurement will fail.

Consider a free particle, upon which a measurement is performed to determine the
time-of-arrival to x = z4. The time-of-arrival can be recorded by a clock situated at
x = x4 which switches off when the particle reaches it. In classical mechanics we could,
in principle, achieve this with the smallest non-vanishing interaction between the particle
and the clock, and hence measure the time-of-arrival with arbitrary accuracy.

In classical mechanics there are other indirect methods to measure the time-of-arrival.
One could invert the equation of motion of the particle and obtain the time in terms of
the location and momentum, T4 (z(t), p(t),z4). This function can be determined at any
time t, either by a simultaneous measurement of z(¢) and p(¢) and evaluation of T4, or by
a direct coupling to Ta(x(t),p(t),z4). One could also measure the time-of-arrival using
the method discussed in the previous chapter. By using a weak interaction which doesn’t

disturb the system, one can continually monitor the point of arrival to see if the particle
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has arrived.

These different methods, namely, the direct measurement, indirect measurement, and
continual monitoring are classically equivalent. They give rise to the same classical time-
of-arrival. They are not equivalent however, in quantum mechanics

In quantum mechanics the corresponding operator T s (x(t), p(t), z4), if well defined,
can in principle be measured to any accuracy. On the other hand, a direct measurement
cannot determine the time-of-arrival of free particles to arbitrary accuracy (as was origi-
nally argued by Allcock[15]). In Section 3.3.2, we argue that Allcock’s arguments are not
sufficient to limit the accuracy of time-of-arrival measurements. One needs to consider
models with physical clocks. Using these models, we shall argue that the accuracy of

time-of-arrival measurements cannot be better than

where Ej is the initial kinetic energy of the particle. The basic reason is that, unlike a
classical clock, in quantum mechanics the uncertainty in the clock’s energy grows when its
accuracy improves [24]. We find that particles with initial kinetic energy F} are reflected
without switching off a clock if this clock is set to record the time-of-arrival with accuracy
better than in eq. (3.39). Furthermore, for the small fraction of the ensemble that does
manage to turn off the clock, the resulting probability distribution becomes distorted. A
detailed discussion of direct time-of-arrival measurements will be discussed in Chapter 4.

We conclude in Section 3.3.5 with a discussion on why we expect eq. (3.39) to hold
in general and we discuss the main results. An explicit calculation of the clock’s final

probability distribution is given in Appendix B.
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3.2 Free Clocks

We will now attempt to make a measurement of the time-of-arrival. In order to do so,
we will need a clock. An ideal clock is linear in time. l.e., the position of the clock’s
pointer should be proportional to the time ¢. It is not hard to see that an ideal clock can

be represented by the Hamiltonian
Heoor = Py . (340)

To read the time of the clock, we measure the coordinate y conjugate to P,. Using
the Heisenberg equations of motion we see that the variable y reads the correct parameter

time ¢ found in the Schrodinger equation.

y(t) —y(t) = _i/[Ya Heiock]dt

= t—t (3.41)

The Hamiltonian for this clock is unbounded from above and below, nonetheless,
using a sufficiently massive particle, we can approximate the ideal situation to arbitrary

accuracy ' . We write p = (p)+Jp, and note that if p > dp, the free particle Hamiltonian

is given by
2
g P
2m
(), (p)p 5
= % + T + O(5p /m) . (342)

Since the first term is constant and we can ignore the higher order term, we see that the
Hamiltonian is approximately linear in momentum. The constant of proportionality is
(p)/m which we set to one for convenience. The corrections to equation (3.41) are also

of order dp/p.

1One could also consider a Larmor clock with a bounded Hamiltonian Hjoer = wJ [16]. The Hilbert
space is spanned by 2j+1 vectors where j is a natural number, and the clock’s resolution can be made
arbitrarily fine by increasing j.
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From (3.41) we see that in order to use this clock to read the time, we need to know
the initial position of the clock’s dial y(¢y) and then subtract this from our final reading of
y. Quantum mechanics puts no limitation on how accurately this clock can be measured.
If we want to accurately infer the time from the final reading of the clock then the clock
must initially be prepared in a state with a very small uncertainty in y. At some later
point, we can measures the coordinate y(¢;) to any degree of accuracy we wish to infer
the time from y(ts) — y(to). If initially dy was very small, then we know that the time
is given by the final reading of y. However, if initially the state of the clock had a large
spread in y, then the time we finally obtain will be inaccurate by an amount dy. This

means that for this clock, the inaccuracy in the time measurement is given by
0T = dy (3.43)

If we simply want to use this clock to read the time, then there are no restrictions on
how accurate the clock can be. So far, nothing prevents us from making the initial state
of the clock’s pointer as close to an eigenstate of y(ty) as we desire. However, since y(to)
and H,, do not commute (and cannot commute if the clock is to operate properly),
the smaller the uncertainty in y(ty), the greater the uncertainty in Hgoe. We will see
that if we want to use this clock to measure the time of an event, then we will encounter
the limitation given by (3.39). We will need to ensure that initially the position of the
clock is uncertain in order for our measurements of the time of an event to succeed.

The reason for this is that since y is conjugate to Hyoer = Py, accurate clocks (which
are narrow in y) have a large spread in P,. This means that in general the energy of
an accurate clock can take on fairly large values. For an infinitely accurate clock the
energy will almost always be infinite. Accurate clocks therefore, have a large energy
uncertainty, and this makes them very hard to use to measure the time of an event.

This is because accurate clocks are usually so energetic that they need a large amount
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of energy to turn them off. To measure the time-of-arrival of a particle, the particle
itself will have to turn off the clock when it arrives — the external observer cannot supply
any energy since she does not know when to turn the clock off. If the clock is much
more energetic than the particle, then it will be impossible for the particle to turn off
the clock and no record will exist that the particle arrived. In fact, the particle may be
reflected and will never arrive. The situation is very different from usual measurements,
where an external observer supplies the energy to make the measurement. If we were
to measure the time of the clock, we would have to supply a large amount of energy to
make an accurate measurement. However, in order to measure the time-of-arrival, it is
the particle which must supply the energy to stop the clock. To see this, let us use the

clock to measure the time-of-arrival.

3.3 Measurement of Time-of-Arrival

In this section we consider toy models of a measurement of time-of-arrival. To begin
with, assume that the particle interacts with a detector that is located at x = 0 and is
coupled to a clock. Initially, as the particle is prepared, the clock is set to show ¢t = 0.
Our purpose is to design a particular set-up such that as a particle crosses the point
x = 0 the detector stops the clock. Since the masses of the particle detector and the
clock are unlimited we can ignore the uncertainty in the position of the measurement
device and assume it is properly positioned at x = 0. We shall consider four models. The
first model describes a direct interaction of the particle with the clock. In the second
model, the particle is detected by a two-level detector, which turns the clock off. To
avoid the reflection due to the clock’s energy, we look next at the possibility of boosting
the energy of the particle in order to turn off the clock. We shall also consider the case

of a “smeared” interaction, and conclude with a general discussion.
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3.3.1 Measurement with a clock

The simplest model which describes a direct interaction of a particle and a clock [16],

without additional “detector” degrees of freedom, is described by the Hamiltonian

1
H = %P,f +0(—x)Py. (3.44)

Here, the particle’s motion is confined to one spatial dimension, z, and 6(z) is a step
function. The clock’s Hamiltonian is represented by Py, and the time is recorded on the
conjugate variable y. Because of the step function, the clock will stop when the particle
is located to the right of the origin.

The equations of motion read:
x =Pyx/m, Pyx=—-Pyi(x) (3.45)

y=0(x), Py=0. (3.46)

At t — oo the clock shows the time of arrival:
v =¥(t0) + [ 0(-x(t)ds (3.47)
0
A crucial difference between the classical and the quantum case, can be noted from
Equation (3.45). In the classical case the back-reaction can be made negligible small
by choosing P, — 0. In this case, the particle follows the undisturbed solution, z(t) =
x(to) + P=(t — to). If initial we set y(ty) = to and x(ty) < 0 the clock finally reads:

ma(ty) ‘

Yoo = ylto) + [ Ol-alto) — 2(t — to)dt = - (3.48)
to m Dz

The classical time-of-arrival is t4 = Yoo = —mz(ty)/p,. The same result would have
been obtained by measuring the classical variable —mxy/p, = —mz(t)/ps + (t — to), at

arbitrary time t. Consequently, the continuous and the indirect measurements alluded

to in Section 3.1, are classically equivalent.
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On the other hand, in quantum mechanics the uncertainty relation dictates a strong
back-reaction, i.e. in the limit of Ay = Aty — 0, p, in (3.45) must have a large uncer-
tainty, and the state of the particle must be strongly affected by the act of measuring.
Therefore, the two classically equivalent measurements become inequivalent in quantum
mechanics.

Before we proceed to examine the continuous measurement process in more detail,
we note that a more symmetric formulation of the above measurement exists in which
knowledge of the direction from which particles are arriving is not needed. We can
consider

1

H = %sz + 0(—x)Py, + 6(x)Py,,. (3.49)

As before, the particle’s motion is confined to one spatial dimension, . Two clocks are
represented by Py, and Py,, and time is recorded on the conjugate variables y; and y»,
respectively.

The first clock operates only when the particle is located at z < 0 and the second
clock at © > 0. For example, if we start with a beam of particle at < 0, a measurement
at t — oo of y; gives the time-of-arrival. Alternatively we could measure t — ys. As a
check we have y; + y, = t. It is harder to determine the time-of-arrival if the particle
arrives from both directions. If however it is known that initially |z| < L, we can measure
y1 and yy after t >> L/v. The time-of-arrival will then be given by ¢4 = min(y;,y2).

For simplicity we shall examine in more detail the case of only one clock and a
particle initially at z < 0, which travels towards the clock at z = 0. The eigenstates of

the Hamiltonian are

(eikw +ARe—ikw)eipy—iw(t) <0
(bkp(m) Y, t) = . ) . (350)
ATezqz—I—zpy—zw(t) x>0

where k£ and p, are the momentum of the particle and the clock, respectively, and w(t) =
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’2“—72,: + pt. Continuity of ¢, requires that

2k
Ar = ——
T k+q
k—q
Ap = —— 3.51
R k+q’ ( )

where ¢ = k% + 2mp = /2m(Ey, + p).

The solution of the Schrodinger equation is

ey =N [ dk [ dpi(p)g(k)bm(a,v.0), (352

where N is a normalization constant and f(p) and g(k) are some distributions. For

example, with

flp) = e~ Mv* (P—po)’

g(k) = e Da(k—ko)*+ikzo_ (3.53)

and xy > 0, the particle is initially localized on the left (z < 0) and the clock (with

probability close to 1) runs. The normalization in eq. (3.52) is thus N? = A;r%y. By

choosing py ~ 1/A,, we can now set the the clock’s energy in the range 0 < p < 2/A,,.
Let us first show that in the stationary point approximation the clock’s final wave

function is indeed centered around the classical time-of-arrival. Thus we assume that

A, and A, are large such that f(p) and g(k) are sufficiently peaked. For z > 0, the

integrand in (3.52) has an imaginary phase

4

0 = qv + kx, + py — — — pt. (3.54)
2m
da o . .
o = 0 implies ) )
q(Ko q(ko)t
Tpeak(P) = — ko To + — (3.55)
and % = 0 gives
mx
ypeak(k) =t—-—-. (356)

qo
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Hence at & = ¢4 the clock coordinate y is peaked at the classical time-of-arrival

_mxo

(3.57)

To see that the clock yields a reasonable record of the time-of-arrival, let us consider

further the probability distribution of the clock

P, Y)aso = [ dala > 0,9,0)1 (3.58)

In the case of inaccurate measurements with a small back-reaction on the particle Ay ~ 1.

The clocks density matrix is then found (see Appendix B) to be given by:

1 _(y—t0)2
P(Y,Y)>0 = ——=e 7 (3.59)
2my(y)

where the width is y(y) = Ay® + (222)? + (52%;)? As expected, the distribution is

centered around the classical time-of-arrival t. = z,m/k,. The spread in y has a term

due to the initial width Ay in clock position y. The second and third term in 7(y) is

_m_

due to the kinematic spread in the time-of-arrival ﬁ = i

and is given by % where
dz(y)* = Az® + (57%;)?. The y dependence in the width in z arises because the wave
function is spreading as time increases, so that at later y, the wave packet is wider. As a
result, the distribution differs slightly from a Gaussian although this effect is suppressed
for particles with larger mass.

When the back-reaction causes a small disturbance to the particle, the clock records
the time-of-arrival. What happens when we wish to make more accurate measurements?

Consider the exact transition probability T = %\Aﬂz, which also determines the proba-

bility to stop the clock. The latter is given by

1Pt [mig_m] (360
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Since the possible values obtained by p are of the order 1/A, = 1/Aty, the probability

to trigger the clock remains of order one only if
Epéts > 1. (3.61)

Here 0t4 stands for the initial uncertainty in position of the dial y of the clock, and is
interpreted as the accuracy of the clock. Ej can be taken as the typical initial kinetic
energy of the particle.

In measurements with accuracy better then 1/E} the probability to succeed drops
to zero like /E}0t4, and the time-of-arrival of most of the particles cannot be detected.
Furthermore, the probability distribution of the fraction which has been detected depends
on the accuracy 6t4 and can become distorted with increased accuracy. This observation
becomes apparent in the following simple example. Consider an initial wave packet that is
composed of a superposition of two GGaussians centered around k = ki and k = ko >> k4.
Let the classical time-of-arrival of the two Gaussians be t; and %, respectively. When
the inequality (3.61) is satisfied, two peaks around ¢; and ¢, will show up in the final
probability distribution. On the other hand, for %’1? > 0tg > %’2?, the time-of-arrival of
the less energetic peak will contribute less to the distribution in y, because it is less likely
to trigger the clock. Thus, the peak at ¢; will be suppressed. Clearly, when the precision
is finer than 1/E}, we shall obtain a distribution which is considerably different from that

obtained for the case 6t4 > 1/E); when the two peaks contribute equally.

3.3.2 Two-level detector with a clock

A more realistic set-up for a time-of-arrival measurement is one that also includes a
particle detector which switches the clock off as the particle arrives. We shall describe
the particle detector as a two-level spin degree of freedom. The particle will flip the state

of the trigger from “on” to “oft”, i.e.. from 1, to |,. First let us consider a model for the
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trigger without including the clock:

(67

1
Htri_qger = —Pi + 9

5 (14 0,)d(x). (3.62)
The particle interacts with the repulsive Dirac delta function potential at z = 0, only
if the spin is in the | 1,) state, or with a vanishing potential if the state is | {,). In
the limit @ — oo the potential becomes totally reflective (Alternatively, one could have
considered a barrier of height o? and width 1/a.) In this limit, consider a state of an
incoming particle and the trigger in the “on” state: |¢))| 1,). This state evolves to

S

V2

where g and 1 are the reflected and transmitted wave functions of the particle, re-

1) = [Yr)| 12) + 1) 12, (3.63)

spectively.

The latter equation can be rewritten as

S0 (m) + 9r)) + 51 L) () — Ioor) (364

Y

Since 1, denotes the “on” state of the trigger, and |, denotes the “off” state, we
have flipped the trigger from the “on” state to the “off” state with probability 1/2 2.
Although this model only works half the time, the chance of success does not depend in
any way on the system, and in particular, on the particle’s energy. Furthermore, one can
construct models where a detector is triggered almost all the time [35], although with
some energy dependence in the probability of triggering.

So far we have succeeded in recording the event of arrival to a point. We have no infor-

mation at all on the time-of-arrival. It is also worth noting that the net energy exchange

between the trigger and the particle is zero, i.e.. the particle’s energy is unchanged.

2Tt is interesting to see that for some wave functions which represent coherent superpositions of
particles arriving from both the left and right, the detector is never triggered. An example of this is
given in Appendix A.
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This model leads us to reject the arguments of Allcock. He considers a detector
which is represented by a pure imaginary absorber H;,, = iV 0(—x). Allcock’s claim is
that measuring the time-of-arrival is equivalent to absorbing a particle in a finite region.
If you can absorb the particle in an arbitrarily short time, then you have succeeded in
transferring the particle from an incident channel into a detector channel and the time-of-
arrival can then be recorded. Using his interaction Hamiltonian one finds that the particle
is absorbed in a rate proportional to V1. One can increases the rate of absorption by
increasing V', but the particle will be reflected unless V' << Ej. He therefore claims that
since you cannot absorb the particle in an arbitrarily short time, you cannot record the
time-of-arrival with arbitrary accuracy.

However, our two level detector is equivalent to a detector which absorbs a particle in
an arbitrarily short period of time, and then transfers the information to another channel.
The particle is instantaneously converted from one kind of particle (spin up), to another
kind of particle (spin down). We therefore see that considerations of absorption alone do
not place any restrictions on measuring the time-of-arrival.

However, we shall see that when we proceed to couple the trigger to a clock we do
find a limitation on the time-of-arrival. A model for this coupling can be given by the
Hamiltonian

«

®(1+02)0(x) + 51+ 02)Py. (3.65)

1
2
Htrigger+clock = 2me +

Since we can have a >> P, it would seem that the triggering mechanism need not be
affected by the clock. If the final wave function includes a non-vanishing amplitude of | ,,
the clock will be turned off and the time-of-arrival recorded. However, the exact solution
shows that this is not the case. Consider for example an initial state of an incoming wave

from the left and the spin in the 1, state.
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The eigenstates of the Hamiltonian in the basis of o, are

6zk¢x + QSLTefsz:c .
U, (z) = . e, (3.66)
¢L‘L€_Zkiz
for z < 0 and .
QSRTeZkT.’L‘ '
Ug(x) = . e, (3.67)
gbmezkl;c

for x > 0. Here ky = \/2m(E — p) = /2mE), and k|, = vV2mE = /2m(E + p).

Matching conditions at z = 0 yields

2ky _ ky
ma k
PRt = 35y (3.68)
ma — (L+7)
k ky
k
brL = —((prr — 1 L , 3.69
R ki(( t ) % e Z_I) ( )
and
PL, = PRy (3.70)
bt = ¢rr — 1. (3.71)
We find that in the limit o — oo the transmitted amplitude is
VE
Or, = —Prt k (3.72)

- VE+VE +p

Precisely as in the previous section, the transition probability decays like \/m From
egs. (3.70,3.71) we get that ¢,; — 0, and ¢+ — 1 as the accuracy of the clock increases.
Hence the particle is mostly reflected back and the spin remains in the 1, state; i.e., the
clock remains in the “on” state.

The present model gives rise to the same difficulty as the previous model. Without
the clock, we can flip the “trigger” spin by means of a localized interaction, but when
we couple the particle to the clock, the probability to flip the spin and turn the clock off

decreases gradually to zero as the clock’s precision is improved.
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3.3.3 Local amplification of kinetic energy

The difficultly with the previous examples seems to be that the particle’s kinetic energy
is not sufficiently large, and energy can not be exchanged with the clock. To overcome
this difficulty one can imagine introducing a “pre-booster” device just before the particle
arrives at the clock. If it could boost the particle’s kinetic energy to an arbitrarily high
value, without distorting the incoming probability distribution (i.e. amplifying all wave
components k equally), and at an arbitrary short distance from the clock, then the time-
of-arrival could be measured to arbitrary accuracy. Thus, an equivalent problem is: can
we boost the energy of a particle by using only localized (time independent) interactions?

Let us consider the following toy model of an energy booster described by the Hamil-
tonian

H = 5 P2 4 00,0(x) + 0061 +02) + 5[Vi0(—x) ~ Veb()](1 —0). (373

Here, o, W, Vi and V; are positive constants. Let us consider an incoming wave packet
propagating from left to right. The role of the term ao,d(z) is to flip the spin 1, to {.,.
The V5 term is the booster, and particles which cross into the region x > 0 will be boosted
in kinetic energy by the amount V5. The other parts of the potential serve to damp out
undesirable components of the wave function which can interfere with each other if a
clock is placed close to the origin. The 1, component of the wave function is damped out
exponential by the W term for x > 0. The |, component is damped out for z < 0 by the
term V. As we shall see, for a given momentum k, one can chose the four free parameters
above such that the wave is transmitted through the booster with probability 1, while
the gain in energy V5 can be made arbitrarily large. The potential barrier W can also be
made arbitrarily large. The last requirement means that the unflipped component decays
for x > 0 on arbitrary short scales, which allows us to locate the booster arbitrarily close

to the clock, while preventing destructive interference between the flipped and un-flipped
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transmitted waves.

The eigenstates of (3.73), in the basis of o,, are given by

eikw+ I e—ikz
U, (z) = ( out ) (3.74)
¢ e?”
for x < 0 and
[one)
Vr(z) = - (3.75)
¢m62k T

for z > 0, where k? = V; — ¢> = —\> + W = —V, + k™. Matching conditions at z = 0 we

find
_ KE+gh+i(kqg—KX) —o?
k' — g+ i(k'\ + kq) + o2’

(14 611). (3.77)

¢t = orr — 1 (3.76)

GOr, = Pr| = o
For a given k, W and V, (or given k, A and k') we still are free to chose « and V] (or q).
We now demand that

kl

a=kKk+q\, ¢= )\E. (3.78)

With this choice we obtain for the transmission and reflection probabilities:

kl
Ry=0, T, = EW}“F =1 (3.79)

Therefore, the wave has been fully transmitted and the spin has flipped with probability
1.

So far we have considered an incoming wave with fixed momentum k. For a general
incoming wave packet only a part of the wave will be transmitted and amplified. Fur-
thermore one can verify that the amplified transmitted wave has a different form than
the original wave function since different momenta have different probabilities of being
amplified. Thus, in general, although amplification is possible and indeed will lead to a
much higher rate of detection, it will give rise to a distorted probability distribution for

the time-of-arrival.
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There is however one limiting case in which the method does seem to succeed. Consid-
er a narrow wave peaked around k£ with a width dk. To first order in dk, the probability

T, that the particle is successfully boosted is given by

Ty ~1— —. .
1 . (3.80)

Therefore in the special case that ‘2—'“ << 1, the transition probability is still close to one.
If in this case we known in advance the value of k£ up to dk << k, we can indeed use the
booster to improve the bound (3.61) on the accuracy.

The reason why this seems to work in this limiting case is as follows. The probability of
flipping the particle’s spin depends on how long it spends in the magnetic field described
by the o term in (3.73). If however, we know beforehand, how long the particle will
be in this field, then we can tune the strength of the magnetic field () so that the
spin gets flipped. The requirement that dk/k << 1 is thus equivalent to having a small
uncertainty in the “interaction time” with this field. In some sense, the measurement is
possible, because we know the particle’s momentum before hand. Of course, if we have
prior knowledge of the particle’s momentum, then we could just measure x and argue that
this allows us to calculate the time of arrival through ¢4 = mz/p. We therefore believe
that the reason the measurement procedure described above works in this limiting case
is because it assumes prior knowledge of the particle’s momentum, and we do not believe
that one could improve it so that it works for all states. These “booster” measurements
cannot be used for general wave functions, and even in the special case above, one still

requires some prior information of the incoming wave function.

3.3.4 Gradual triggering of the clock

In order to avoid the reflection found in the previous two models, we shall now replace

the sharp step-function interaction between the clock and particle by a more gradual
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transition.

When the WKB condition is satisfied

d\(x)
dx

—e<<1 (3.81)
where \(z)™? = 2m[E, — V (z)], the reflection amplitude vanishes as
~ exp(—1/€%) (3.82)

Solving the equation for the potential with a given € we obtain

1 1
2me? z2

Ve(z) = Eo — (3.83)

Now we observe that any particle with E' > Ej also satisfies the WKB condition (3.81)
above for the same potential V.. Furthermore p,V. also satisfies the condition for any
py > 1.

These considerations suggest that we should replace the Hamiltonian in eq. (3.49)

with
H=P,*/2m +V(z)P,y (3.84)
where
2
—w—‘; T < Ty
Vig)={ * (3.85)
-1 xz>2x4

Here 1, = 2me>.

Thus this model describes a gradual triggering on of the clock which takes place when
the particles propagates from x — —oo towards © = z 4. In this case the arrival time is
approximately given by ¢t —y where ¢t = ¢; — ¢;. Since without limiting the accuracy of
the clock we can demand that p, >> 1, the reflection amplitude off the potential step is

exponentially small for any initial kinetic energy Fj.
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The problem is however that the final value of ¢ — y does not always correspond to
the time-of-arrival since it contains errors due to the affect of the potential V() on the
particle which we shall now proceed to examine.

In the following we shall ignore ordering problems and solve for the classical equations

of motion for (3.84). We have

y(tg) —ye) = [ V(e (3.86)

which can be decomposed to

to
y(ty) —y(ti) = (ti —to) + (¢ — ;) + / V(z(t"))dt' = A+ B+ C (3.87)
t;
where
1
A= [ 4 + p,74 /E — \/1? + p, 2 E] 3.88
T VoA e B = fat £ pyah (3.88)
is the time that the particle travels from x; to x4 in the potential p,V (z), B is the total
time, and
1+,/1+E .
TA p Z;
C=- [log - + log —] (3.89)
,/2mpy 1+ .1+ mz A
PyTy

The last term C, corresponds to an error due to the imperfection of the clock, i.e. the
motion of the clock prior to arrival to 4. By making p, large we can minimize the error
from this term to ~ (x4 logp,/\/2mp,) .

Inspecting equation (3.87) we see that by measuring y; — y; and then subtracting
B = t; —t; (which is measured by another clock) we can determine the time ¢, — t;,
which is the time-of-arrival for a particle in a potential p,V (), up to the correction C.
However this time reflects the motion in the presence of an external (unknown) potential,
while we are interested in the time-of-arrival for a free particle.

Nevertheless, if p,/E << 1 we obtain

Ta— T Dy
—-A= + 0 (—) 3.90
2mE E ( )
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The time-of-arrival can hence be measured provided that Erdt >> 1. On the other hand,
when the detector’s accuracy is 6t < 1/F, the particle still triggers the clock. However
the measured quantity, A, no longer correspond to the time-of-arrival. Again, we see
that when we ask for too much accuracy, the particle is strongly disturbed and reading

of the clock has nothing to do with the time-of-arrival of a free particle.

3.3.5 General considerations

We have examined several models for a measurement of time-of-arrival and found a
limitation,

dta > 1/Ey, (3.91)

on the accuracy that t4 can be measured. Is this limitation a general feature of quantum
mechanics?

First we should notice that eq. (3.91) does not seem to follow from the uncertainty
principle. Unlike the uncertainty principle, whose origin is kinematic, (3.91) follows from
the nature of the dynamic evolution of the system during a measurement. Furthermore
here we are considering a restriction on the accuracy (not uncertainty) of a single mea-
surement. While it is difficult to provide a general proof, in the following we shall indicate
why (3.91) is expected to hold under more general circumstances.

Let us examine the basic features that gave rise to (3.91). In the toy models considered
in Sections 3.3.1 and 3.3.2, the clock and the particle had to exchange energy p, ~ 1/6t 4.
As a result, the effective interaction by which the clock switches off, looks from the point
of view of the particle like a step function potential. This led to “non-detection” when
(3.91) was violated.

Can we avoid this energy exchange between the particle and the clock? Let us try to

deliver this energy to some other system without modifying the energy of the particle.
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For example consider the following Hamiltonian for a clock with a reservoir:

2

Py
om + 0(_X)Hc + Hyes + ‘/;eso(x) (392)

H =

The idea is that when the clock stops, it dumps its energy into the reservoir, which may
include many other degrees of freedom, instead of delivering it to the particle. In this
model, the particle is coupled directly to the clock and reservoir, however we could as

well use the idea of Section 3.3.2 above. In this case:

_Px2+9(1+ 15(%) + ~(1 4+ ) Ho + Hyos + ~(1 — 0.}V (3.93)
= 2m 2 Oy 2 Oy c res 2 Oz)Vres- .

H

The particle detector has the role of providing a coupling between the clock and reservoir.

Now we notice that in order to transfer the clock’s energy to the reservoir without
affecting the free particle, we must also prepare the clock and reservoir in an initial state
that satisfies the condition

H,— Vs =0 (3.94)

However this condition does not commute with the clock time variable y. We can measure
initially y — R, where R is a collective degree of freedom of the reservoir such that
[R, V;es] = 4, but in this case we shall not gain information on the time-of-arrival y
since R is unknown. We therefore see that in the case of a sharp transition, i.e. for a
localized interaction with the particle, one cannot avoid a shift in the particle’s energy.
The “non-triggering” (or reflection) effect cannot be avoided.

We have also seen that the idea of boosting the particle “just before” it reaches the
detector, fails in the general case. What happens in this case is that while the detection
rate increase, one generally destroys the initial information stored in the incoming wave
packet. Thus although higher accuracy measurements are now possible, they do not

reflect directly the time-of-arrival of the initial wave packet.
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Finally we note that in reality, measurements usually involve some type of cascade
effect, which lead to signal amplification and finally allows a macroscopic clock to be
triggered. A typical example of this type would be the photo-multiplier where an initially
small energy is amplified gradually and finally detected. Precisely this type of process
occurs also in the model of section 3.3.4. In this case the particle gains energy gradually
by “rolling down” a smooth step function. It hence always triggers the clock. The basic
problem with such a detector is that when (3.91) is violated, the “back reaction” of
the detector on the particle, during the gradual detection, becomes large. The relation
between the final record to the quantity we wanted to measure is lost.

We have examined various models for the measurement of time-of-arrival, ¢4, and
found a basic limitation on the accuracy that t4 can be determined reliably: 6t4 > 1/E}.
This limitation is quit different in origin from that due to the uncertainty principle;
here it applies to a single quantity. Furthermore, unlike the kinematic nature of the
uncertainty principle, in our case the limitation is essentially dynamical in its origin; it
arises when the time-of-arrival is measured by means of a continuous interaction between

the measuring device and the particle.



