Appendix A

Zero-Current Wavefunctions

One interesting aspect of the detector discussed in Section 3.3.2, is that while it can be
used for wave-packets arriving from the left or the right, it will not always be triggered
if the wavefunction is a coherent superposition of right and left moving modes. Consider

for example, the superposition
Y(z) = Ae™® + Ae~ke (A.216)
One can easily verify that the current

i t) = ~i - [w*(x,t) a’”éi’ b _ ang’t)w(x,t)] (A.217)

is zero in this case. |¢(0,1)|? is non-zero, although the state is not normalizable. As in

eq. (3.63) this state evolves into
A tkx —tkx ikx —ikx
@) 1) = 5|+ e )+ (¢ 4 o) 1) (A.218)
Which, when rewritten in the o, basis, is just
A(e™®® 4 e )| 1,). (A.219)

i.e. the detector is never triggered.

This wavefuntion is similar to the antisymmetric wavefunctions discussed by Yamada
and Takagi in the context of decoherent histories [36] and Leavens [37] in the context of
Bohmian mechanics, where also one finds that the particles never arrive. How to best

treat these cases is an interesting open question.
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Appendix B

Gaussian Wave Packet and Clocks

Using the simple model of Section 3.3.1 (3.44), we now calculate the probability distri-
bution of a clock which measures the time-of-arrival of a Gaussian wave packet. We will
perform the calculation in the limits when the clock is extremely accurate and extremely
inaccurate. The wave function of the clock and particle is given by (3.52) and the dis-
tributions are both Gaussians given by (3.53). In the inaccurate limit, when p, << k,
Ar ~ 1. We trace over the position of the particle on the condition that the clock was

triggered, ie. z > 0.

Py veso = [ daft(z > 0,y,0) (B.220)
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After a sufficiently long time, ie. ¢ >> t, the wave function has no support on the
negative x-axis, and if p, > 1/Ay, then it will not have support in negative p. We can
thus integrate p and x over the entire axis. Integrating over z gives a delta-function in

q- We can then integrate over p' to give

27‘(‘]\[2 k2_k12 .
A e = [ dkdi dp\Jk2 + 2mp (k) g (k) ()£ (0 + ")l

m 2m

where we have used the fact that §(f(z)) = Jf,(é_:z))

term varies little in comparison with the exponential terms and can be replaced by its

average value /k2 + 2mp, ~ k,. Integrating over p gives

2 N2k0 — 2 1AV 14 . Vi
DYy Y)aso = — N 2Z - / dk dk! e Tms ETRPER) 0y or (k1) 7R3 (B 221)
y

when f(z,) = 0. The square root

m
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Appendix B. Gaussian Wave Packet and Clocks 112

Since Ay k >> 1, for a wave packet peaked around k, we can approximate the argument

of the first exponential by Ay LA 2 (k — k')2. This allows us to integrate over k and k'

1 7(74*%)2
p(Y,Y)>0 = ——=e 7W (B.222)
2my(y)

where the width is y(y) = Ay® + (222)% + (54%2)%
As expected, the distribution is centered around the classical time-of-arrival ¢, =
xzom/k,. The spread in y has a term due to the initial width Ay in clock position y.

The second and third term in 7(y) is due to the kinematic spread in the time-of-arrival

1/dE = 7% and is given by dm(y) where dz(y)* = Az® + (5-%:)>. The y dependence

in the width in x arises because the wave packet is spreading as time increases, so that
at later y, the wave packet is wider. As a result, the distribution differs slightly from a
Gaussian although this effect is suppressed for particles with larger mass.

When the clock is extremely accurate ie. p, >> k, we have Ap ~ k mp
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Since p, >> k,, we can approximate this integral as

12

A _Z-k2
Py Y)a>o = — | /dkkg(k)e o |2 (B.223)

where A = 47r\/%N2 f %| f(p)|>. We can approximate p by p, to take it outside the

A |- L ZAZx. (B.224)
mpe T
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integrand, giving

The final integration over k yields

Py, y)so =~ 4 e BHW (B.225)
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where the width 3(y) = Az® 4 (55%;)” is independent of Ay because the kinematic

spread in the time-of-arrival 1/dFE is much larger than the spread in the position of the
clock. In this limit we see two additional factors. The amplitude decays like \/E,/p, so

that improved accuracy decreases our chances of detecting the particle. Also, there is

a minor correction of % More energetic particles with faster arrival times are more

likely to trigger the clock.



Appendix C

Time-of-Arrival Eigenstates

We will now show that the eigenstates of [9] and those of the unmodified time of arrival
operator do not correspond to a delta function at the time-of-arrival ¢4 but are instead

proportional to T3, Using the Schrodinger representation, we see that at time ¢4, these

eigenstates (eg J;, (¢,t = ta) of eqn. (4.4)) in the x-representation are given by

@Iy = [ dhemmeiads g (k)
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= / dke 7 \/_exp ( dk k) +
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iex —%3 / dke™*\/k (C.226)
2mm

As € goes to zero the first integral goes to zero. So we get

it =12) = | a2V (C.227)

where we have added a small imaginary part to x to make the integral converge, and
then set it to zero at the end. One finds the same behaviour for the eigenstates of the
unregularized time-of-arrival operator |T'). The reason is that as € goes to zero, the

modification of the eigenstates only occurs at k¥ = 0 which is a set of measure zero.
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