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monomodal Gaussian distribution peaked at a

metallicity of −0.8) is consistent with a

bimodal distribution in color.

The reason for the nonlinearity of the color-

metallicity relation goes back to the evolution of

stars of different metallicities. Old evolved stars

pass through a helium-burning phase (the hori-

zontal branch of the Hertzsprung-Russell dia-

gram), which is predominantly blue at low

metallicities and becomes rapidly redder as the

metallicity increases from −1.0 to −0.5. The

mean colors of the less-evolved giant and dwarf

stars also become redder at higher metallicities,

again in a nonlinear way. 

Yoon et al. also sort out another aspect of

cluster color. The fraction of clusters in each

color mode, and the mean colors of the modes,

are observed to vary with the brightness of the

host galaxy. These variations are easily under-

stood in the Yoon et al. picture. Brighter ellipti-

cals have higher mean metallicities than fainter

ellipticals; this has been known for decades.

Yoon et al. show how the projection of different

metallicity distributions affects the predicted

color distribution. As the mean metallicity

decreases, the fraction of clusters in the blue

mode increases, and the colors of both modes

become bluer, just as observed. Similar varia-

tions within individual ellipticals can also be

understood simply as a consequence of the inter-

nal radial gradients of metallicity that have also

been known for many years.

The conclusion from the argument of Yoon et

al. is that two separate epochs of globular cluster

formation in ellipticals may not be needed. A

single broad distribution of cluster metallicity

can produce a bimodal color distribution. This

makes sense because broad distributions of

metallicity arise naturally in galaxies, from their

continuous chemical evolution. Although the

results of Yoon et al. do not exclude the merger

origin of ellipticals, color bimodality may no

longer be strong evidence for the two epochs of

cluster formation that were predicted in the

merger picture.
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T
here are a number of arenas where quan-

tum resources outperform their classical

counterparts, but this improvement is

particularly impressive in the theory of computa-

tion. Quantum computers can efficiently solve

problems that are believed to be unfeasible on a

classical computer, as they would need to run

exponentially longer. What type of programs can

be run on a quantum computer is a question that

Nielsen et al. attack on page 1133 of this issue

(1). Currently, we have only a handful of quan-

tum algorithms, of which the most noteworthy

are Shor’s factoring algorithm (2) and Grover’s

search algorithm (3). To further our understand-

ing, one of course wants to find more problems

that can be solved faster on a quantum computer,

and although progress has been made, this has

proven to be a difficult task. 

Although it is doubtful, it could even be that

quantum computers can solve all problems in the

class NP—those problems whose solutions can

be efficiently checked on a classical computer

(4). If such a thing were true, it would have radi-

cal implications not only for physics but for

human thought in general. We believe that writ-

ing a great poem is more difficult than recogniz-

ing one, because many can do the latter but few

the former. Likewise we believe that discovering

a new theory of nature, which seems to require

genius, is much harder than checking the cor-

rectness of the theory, a task that many are capa-

ble of. Yet at the moment we don’t have a proof of

the existence of problems whose solutions can

be checked efficiently on a classical computer

but not solved efficiently. Nor do we have a proof

that quantum computers cannot solve such NP

problems. Finding such an example

is one of the great tasks of classical

and quantum computer science. 

What a computer does when it

solves a problem is to implement a

mapping between inputs to the com-

puter and a set of outputs. Thinking

of this in terms of a physical opera-

tion, one sees that the quantum com-

puter is implementing a physical

mapping from initial quantum states

to final states. This physical map-

ping between states is what we call

“unitary evolution” or sometimes

Quantum computers may become more

powerful than conventional computers,

especially at solving hard problems. Finding

efficient ways to tackle such problems turns out

to resemble understanding the path taken by a

falling object.

Implementing a Quantum
Computation by Free Falling
Jonathan Oppenheim
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Arriving at a solution. A quantum
computation could be viewed as a path
along a landscape of hills and valleys.
The desired unitary evolution of states
in the computation is represented by
U. For the quickest path to the target
unitary there exists a computation that
runs at approximately the travel time.
One wants to learn whether there is
an efficient computation (polynomial
time) or whether the computation is
inefficient (exponential time).
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just a “unitary.” We know that almost all unitaries

cannot be efficiently implemented (5), but we

don’t have an example of one. Although under-

standing which unitaries can be efficiently

implemented has proven difficult, one might be

able to relate this problem to other problems that

have been more thoroughly studied, and thus

gain some greater insights. This is exactly what

Nielsen et al. have done. They link a problem in

Riemannian geometry—namely, finding the

shortest path between two points—to the prob-

lem of deciding whether a unitary can be imple-

mented efficiently. This allows ideas from each

of these fields of research to inspire the other. 

Given a family of unitaries U that act on reg-

isters of size n quantum bits (or qubits), we are

interested in how long it takes a quantum com-

puter to implement these unitaries. At each step

of the computation, the computer performs one

of some set of elementary interactions (called a

gate). If the number of steps the computer uses

scales polynomially in n, then we say that the

computation is efficient. If the number of steps

scales exponentially in n, then the computation is

not efficient. Deciding whether the computation

is efficient is a matter of decomposing the unitary

into the smallest number of elementary gates.

This is a daunting task, because there are all kinds

of ways one can make this decomposition—how

do we know that we have found an optimal one? 

Nielsen et al., building on previous work (6,

7), relate this question to geometry as follows.

Imagine you are sitting at the center of a surface,

and your goal is to reach some other point on it

that represents your target U (see the figure). The

authors show that if you take the shortest path to

your target, then the time of your journey is close

to the time it would take for a quantum computer

to implement the unitary. If your journey takes a

time that grows polynomially with n, then there

exists an efficient implementation of the unitary

(and vice versa). It works roughly like this: First

put coordinates on the surface to guide you on

your journey; the quantum computer will take

the basis of your coordinate system to corre-

spond to particular interactions it will apply dur-

ing the computation. Next, the authors endow

the surface with a metric, which tells us how to

measure the time our journey to the

target will take. The metric they

choose causes clocks to run normally

if we travel along directions that corre-

spond to elementary interactions, but

causes them to run very fast if we

travel along directions that correspond to more

complicated interactions involving more than

two qubits. This forces us to avoid paths that

travel in these directions if we wish to minimize

our travel time. Now we want to take the shortest

distance to our target—a geodesic. Geodesics

are paths that a freely falling object would take,

so to make our journey optimal, we should free-

fall. We thus begin our journey by picking a

direction and speed—but we must pick carefully

if we hope to reach our target. In general, most

geodesics will not pass through our target, and it

may also be that there are many geodesics that

pass through the target, forcing us to find the

shortest one. Once we have found the shortest

geodesic, Nielsen et al. then show that it corre-

sponds to an implementation that approximates

the desired unitary and that is of a length polyno-

mial in the time traveled along the geodesic.

This, coupled with a lower bound proof (7) (with

the caveat that it pertains to exact implementa-

tion of the unitary without additional work

space), completes the correspondence. 

Finding the shortest geodesic between two

points is of course a difficult problem; how-

ever, Riemannian geometry is a much more

mature field than quantum computing and has

the luxury of dealing with continuous paths,

bringing with it all the power of differential

geometry. One thus hopes that insights from

it may yield some results in computation.

Likewise, insights from computation might

yield some surprises in Riemannian geometry.

Proving that a particular unitary is difficult to

implement is of great interest, so one would

like to remove the caveats contained in the

proof of the lower bound. Many questions are

raised here. Because quantum states are

closely related to quantum operations, both

from a mathematical and an operational per-

spective, one wonders whether analogous rela-

tionships could be found for quantum states.

One might also be able to relate the workings

of classical computers to questions of geome-

try. The relationship between geometry and the

implementation of unitaries promises to be, at

the very least, stimulating. 

References and Notes

1. M. Nielsen et al., Science 311, 1133 (2006).

2. P. Shor, SIAM J. Sci. Statist. Comput. 26, 1484 (1997).

3. L. K. Grover, in the Proceedings of the 28th Annual ACM

Symposium on the Theory of Computing (May 1996), 

p. 212.

4. The NP class of problems is so-named because they are

problems that can be solved by a nondeterministic Turing

machine in a time that is a polynomial function of the

problem size.

5. E. Knill, http://arxiv.org/abs/quant-ph/9508006.

6. Related geometric methods have been used in control

theory, for example, in (8).

7. M. Nielsen, http://arxiv.org/abs/quant-ph/0502070; also

available in Quantum Inform. Comput., in press.

8. N. Khaneja, S. J. Glaser, R. Brockett, Phys. Rev. A 65,

032301 (2002).

10.1126/science.1124295

1107

T
he many ways in which men and

women differ are attributed to the qual-

itative difference in the composition of

their pair of sex chromosomes—XY chromo-

somes versus XX chromosomes, respectively.

But difference in the num-

ber of X chromosomes

also poses a potential

problem. In mammals,

most genes on one X

chromosome are inactivated

in females to equalize the “dose” of X-chro-

mosome genes between XX females and XY

males. Our understanding of this process

remains incomplete, but two new reports, by

Xu et al. on page 1149 of this issue (1) and by

Bacher et al. (2), reveal an important facet of

X chromosome behavior at the onset of X

chromosome inactivation.

The initial stages of this regulatory

process are quite complex [reviewed in (3, 4)].

Early in mammalian development, before X

chromosome inactivation occurs, each cell

must calculate the number of Xs and initiate

inactivation only when more than one X is

present. Furthermore, embryonic X chromo-

some inactivation is random—some cells ini-

tially decide to inactivate their maternally

inherited X chromosome while others target

the paternal X chromosome. Sequences regu-

lating these counting and choice steps reside

at the X inactivation center (Xic), a region on

the X chromosome that includes three genes

that encode noncoding RNA transcripts (3, 5).

The Xist gene, expressed only from the X

chromosome that will be inactivated, encodes

a structural RNA that coats the inactived X

Female mammals inactivate one of their two X chromosomes to ensure a dosage of genes equal to

that of males who contain a single X. A brief union between the pair of X chromosomes may initi-

ate this inactivation process.

“X”-Rated Chromosomal
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