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monomodal Gaussian distribution peaked at a
metallicity of -0.8) is consistent with a
bimodal distribution in color.

The reason for the nonlinearity of the color-
metallicity relation goes back to the evolution of
stars of different metallicities. Old evolved stars
pass through a helium-burning phase (the hori-
zontal branch of the Hertzsprung-Russell dia-
gram), which is predominantly blue at low
metallicities and becomes rapidly redder as the
metallicity increases from —1.0 to —0.5. The
mean colors of the less-evolved giant and dwarf
stars also become redder at higher metallicities,
again in a nonlinear way.

Yoon et al. also sort out another aspect of
cluster color. The fraction of clusters in each
color mode, and the mean colors of the modes,
are observed to vary with the brightness of the
host galaxy. These variations are easily under-
stood in the Yoon e al. picture. Brighter ellipti-

cals have higher mean metallicities than fainter
ellipticals; this has been known for decades.
Yoon et al. show how the projection of different
metallicity distributions affects the predicted
color distribution. As the mean metallicity
decreases, the fraction of clusters in the blue
mode increases, and the colors of both modes
become bluer, just as observed. Similar varia-
tions within individual ellipticals can also be
understood simply as a consequence of the inter-
nal radial gradients of metallicity that have also
been known for many years.

The conclusion from the argument of Yoon et
al. is that two separate epochs of globular cluster
formation in ellipticals may not be needed. A
single broad distribution of cluster metallicity
can produce a bimodal color distribution. This
makes sense because broad distributions of
metallicity arise naturally in galaxies, from their
continuous chemical evolution. Although the

results of Yoon ef al. do not exclude the merger
origin of ellipticals, color bimodality may no
longer be strong evidence for the two epochs of
cluster formation that were predicted in the
merger picture.
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Implementing a Quantum
Computation by Free Falling

Jonathan Oppenheim

here are a number of arenas where quan-

tum resources outperform their classical

counterparts, but this improvement is
particularly impressive in the theory of computa-
tion. Quantum computers can efficiently solve
problems that are believed to be unfeasible on a
classical computer, as they would need to run
exponentially longer. What type of programs can
be run on a quantum computer is a question that
Nielsen et al. attack on page 1133 of this issue
(I). Currently, we have only a handful of quan-
tum algorithms, of which the most noteworthy
are Shor’s factoring algorithm (2) and Grover’s
search algorithm (3). To further our understand-
ing, one of course wants to find more problems
that can be solved faster on a quantum computer,
and although progress has been made, this has
proven to be a difficult task.

Although it is doubtful, it could even be that
quantum computers can solve all problems in the
class NP—those problems whose solutions can
be efficiently checked on a classical computer
(4). If such a thing were true, it would have radi-
cal implications not only for physics but for
human thought in general. We believe that writ-
ing a great poem is more difficult than recogniz-
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ing one, because many can do the latter but few
the former. Likewise we believe that discovering
a new theory of nature, which seems to require
genius, is much harder than checking the cor-
rectness of the theory, a task that many are capa-

Published by AAAS

Quantum computers may become more
powerful than conventional computers,
especially at solving hard problems. Finding
efficient ways to tackle such problems turns out
to resemble understanding the path taken by a
falling object.

ble of. Yet at the moment we don’t have a proof of
the existence of problems whose solutions can
be checked efficiently on a classical computer
but not solved efficiently. Nor do we have a proof
that quantum computers cannot solve such NP
problems. Finding such an example
is one of the great tasks of classical
and quantum computer science.
What a computer does when it
solves a problem is to implement a
mapping between inputs to the com-
puter and a set of outputs. Thinking
of this in terms of a physical opera-
tion, one sees that the quantum com-
puter is implementing a physical
mapping from initial quantum states
to final states. This physical map-
ping between states is what we call
“unitary evolution” or sometimes

Arriving at a solution. A quantum
computation could be viewed as a path
along a landscape of hills and valleys.
The desired unitary evolution of states
in the computation is represented by
U. For the quickest path to the target
unitary there exists a computation that
runs at approximately the travel time.
One wants to learn whether there is
an efficient computation (polynomial
time) or whether the computation is
inefficient (exponential time).
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justa “unitary”” We know that almost all unitaries
cannot be efficiently implemented (5), but we
don’t have an example of one. Although under-
standing which unitaries can be efficiently
implemented has proven difficult, one might be
able to relate this problem to other problems that
have been more thoroughly studied, and thus
gain some greater insights. This is exactly what
Nielsen ef al. have done. They link a problem in
Riemannian geometry—namely, finding the
shortest path between two points—to the prob-
lem of deciding whether a unitary can be imple-
mented efficiently. This allows ideas from each
of'these fields of research to inspire the other.
Given a family of unitaries U that act on reg-
isters of size n quantum bits (or qubits), we are
interested in how long it takes a quantum com-
puter to implement these unitaries. At each step
of the computation, the computer performs one
of some set of elementary interactions (called a
gate). If the number of steps the computer uses
scales polynomially in #, then we say that the
computation is efficient. If the number of steps
scales exponentially in 7, then the computation is
not efficient. Deciding whether the computation
is efficient is a matter of decomposing the unitary
into the smallest number of elementary gates.
This is a daunting task, because there are all kinds
of ways one can make this decomposition—how
do we know that we have found an optimal one?
Nielsen et al., building on previous work (6,
7), relate this question to geometry as follows.
Imagine you are sitting at the center of a surface,
and your goal is to reach some other point on it
that represents your target U (see the figure). The
authors show that if you take the shortest path to
your target, then the time of your journey is close
to the time it would take for a quantum computer
to implement the unitary. If your journey takes a
time that grows polynomially with 7, then there
exists an efficient implementation of the unitary
(and vice versa). It works roughly like this: First
put coordinates on the surface to guide you on
your journey; the quantum computer will take
the basis of your coordinate system to corre-
spond to particular interactions it will apply dur-
ing the computation. Next, the authors endow
the surface with a metric, which tells us how to
measure the time our journey to the
target will take. The metric they
choose causes clocks to run normally
if we travel along directions that corre-
spond to elementary interactions, but
causes them to run very fast if we
travel along directions that correspond to more
complicated interactions involving more than
two qubits. This forces us to avoid paths that
travel in these directions if we wish to minimize
our travel time. Now we want to take the shortest
distance to our target—a geodesic. Geodesics
are paths that a freely falling object would take,
so to make our journey optimal, we should free-
fall. We thus begin our journey by picking a
direction and speed—but we must pick carefully
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if we hope to reach our target. In general, most
geodesics will not pass through our target, and it
may also be that there are many geodesics that
pass through the target, forcing us to find the
shortest one. Once we have found the shortest
geodesic, Nielsen et al. then show that it corre-
sponds to an implementation that approximates
the desired unitary and that is of a length polyno-
mial in the time traveled along the geodesic.
This, coupled with a lower bound proof'(7) (with
the caveat that it pertains to exact implementa-
tion of the unitary without additional work
space), completes the correspondence.

Finding the shortest geodesic between two
points is of course a difficult problem; how-
ever, Riemannian geometry is a much more
mature field than quantum computing and has
the luxury of dealing with continuous paths,
bringing with it all the power of differential
geometry. One thus hopes that insights from
it may yield some results in computation.
Likewise, insights from computation might
yield some surprises in Riemannian geometry.
Proving that a particular unitary is difficult to
implement is of great interest, so one would
like to remove the caveats contained in the
proof of the lower bound. Many questions are
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raised here. Because quantum states are
closely related to quantum operations, both
from a mathematical and an operational per-
spective, one wonders whether analogous rela-
tionships could be found for quantum states.
One might also be able to relate the workings
of classical computers to questions of geome-
try. The relationship between geometry and the
implementation of unitaries promises to be, at
the very least, stimulating.
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“X"-Rated Chromosomal

Rendezvous

Laura Carrel

Female mammals inactivate one of their two X chromosomes to ensure a dosage of genes equal to
that of males who contain a single X. A brief union between the pair of X chromosomes may initi-

ate this inactivation process.

he many ways in which men and

I women differ are attributed to the qual-
itative difference in the composition of

their pair of sex chromosomes—XY chromo-
somes versus XX chromosomes, respectively.
But difference in the num-
ber of X chromosomes
also poses a potential
problem. In mammals,
most genes on one X
chromosome are inactivated

in females to equalize the “dose” of X-chro-
mosome genes between XX females and XY
males. Our understanding of this process
remains incomplete, but two new reports, by
Xu et al. on page 1149 of this issue (/) and by
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Bacher et al. (2), reveal an important facet of
X chromosome behavior at the onset of X
chromosome inactivation.

The initial stages of this regulatory
process are quite complex [reviewed in (3, 4)].
Early in mammalian development, before X
chromosome inactivation occurs, each cell
must calculate the number of Xs and initiate
inactivation only when more than one X is
present. Furthermore, embryonic X chromo-
some inactivation is random—some cells ini-
tially decide to inactivate their maternally
inherited X chromosome while others target
the paternal X chromosome. Sequences regu-
lating these counting and choice steps reside
at the X inactivation center (Xic), a region on
the X chromosome that includes three genes
that encode noncoding RNA transcripts (3, 5).
The Xist gene, expressed only from the X
chromosome that will be inactivated, encodes
a structural RNA that coats the inactived X
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